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THE STANDARD ERRORS OF VARIOUS TEST STATISTICS

WHEN THE TEST ITEMS ARE SAMPLED

Vreacric M. Lord

Abstiact

Supposa thet & large number of forms of the same test are administered
to the same group of examinees, each form consisting of a random sample of
items drawn from a common pool of items. If some test statistic is com~
puted separately for each form of the test, the value obtained will (ig-
noring practice effect, fatigue, etc.) differ from form to form because of
sampling fluctuations. The standard deviation of the values cbtained
represents, approximately, the standard error of the test statistic when
the test items are sampled.

Formules for such standard errors are here derived for a) the test
score of a single examinee, b) the mean test score of a group of exami-
nees, ¢) the standard deviation of the scores of the group, d) the
Kuder-Richardson reliability of the test, formula 20, e) the Kuder-
Richardson reliability, formula 21, f) the test validity. In large
samples, the foregoing statistics (with the possible exception of d) are
approximately normally distributed, so that significance tests can be made
by famillar procedures.

Consideration is given to the relation of certain of the foregoing
standard errors to the conventional standard error of measurement, to
the Kuder-Richardson relisbility coefficients 20 and 21, and %o the Wilks-
Votaw criterion for parallel tests. Practical applications of the results
are briefly dimcussed. In particular, it is concluded that the Kuder-
Richardson formuila-2l relisbility coefficient should properly be used in

certalin practical situations instead of the commonly preferred formula 20
coefficient.



THE 8TANDARD ERRORS OF VARIQOUS TEST STATISTIC

WHEN THE TEST ITEMS ARE SAMPLED* -

Frederic M. Lord -
_';Suppose’that*the'SEMé'téstfis admiﬁiste%ea*to’a-iéfgé ﬁtﬁbéf of
separate groups of examinees, the groups being random samples all drawn
- from the same population, aad suppose that some test stat*stic is com~
puted separately for each sample of examinees. The value cbtained for
this test statistic will, of course, differ from sample to sample be-
cause of sampling fluctuations. The standard deviation of these values

over a very large mumber of samples is the standard error of the test

statistlic when examinees are sampled. For convenience, this type of

sampling will be referred to as type 1 saﬂpling.,

On the other hand, suppose that a large number of forms of the
same test are administerea t0 ths same groop'of examinees, each form
consisting of & random sample of items drawn from e common population
of items; and suppose that some—test statistic is computed separately
for each form of the test. uet us assume for -theoretical purposes
. that the examinees do not change in any way during the course of test-
.ing,- N that there is no practice effect, no fatigue, ete. The value
computed for the test statistic will still, of course, differ from form
to form hecause of sampllng fluctuations. The standard deviation of .
these values cver a:very large nomber of saﬁples is tho stsndard.error

of the test statistic when the test items are sampled. This type of

sampling will be referred to as a type 2 sampling. Test forms con-

structed by type 2 sampling will be called randomly parallel forms or

randomly parallel tegts.

* .
The writer is indebted tc Professor S. S5. Wilks who has checked
over certain critical portions of a draft of this paper.
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Type 1 standard ervor foxmilas have long been evail~ble srd are
sometimes igégrrectzy used in situstions where seupling of test items
.:!.é ofrcil'ucial mortmce. Thel preseat ﬁaper is caneerne& withﬂ derive
ing formiles for the type 2 ste.ndarﬂ errors oL, ser'ta.in test ataﬁs‘t‘lcm
Formulas for the two kinde of etandard errora ma;y usually be "eadil,y
distinguished. on & superficial level by the following cheracteristics,
which underscore the nssential differem*e between them: <+type 1 stand-
ard errors are usua.ll.; o’oviously proportionel to scme power (positive
or negative) of the mmber of examinees in the sample -- most commonly
inversely proportic_u:m_l__ to.lthe square ;oct of this mumber -- and are
usurlly much lesé obviously and simply related, if at all, to the
mumber of items in the test; iype 2 standard errors have the coiTe-
sponling eheracteristic with respect To -, the funler of Ltens in

the sample.

Notation and Suma.ry of Fozmslan

'I‘he test statiatics with which the presen‘b study ia concmed
‘are P primarily the- fo.;lcwing £

T, - the o‘bserved test score of examinee 8 s obtained 'hy
ccunting the number of items answered correctly on a

single test.

B tﬁe'meap of the scores obtained by the N examinees on
' e sirgle test. L =Xt /N . '

B, -- the standard deviation of the sccreﬁ‘obta.ined by the N

examinees on & single test. ei = zti/m - ¥ .,
8 ’
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Foy == the Kuder-Richardson relisbility coefficlent, formale 23.

=-...~"3..! = b N7 2
Ty =y Ll E(n - r,)/nat] %

T oor T, -- the Kuder-Richardson reliability coeftficient,
formula 20. r = -ﬁx-_l-i- %= :Illsi"/si) {symdols explained

in the succeeding list).

r oy the correlstion of the test score with any external

variable, c . T Bct/scat "
Ccnsiderable care in defining notation muat be taken here in order

to avold serious confusion. Additional symbols that will be used are

listed below for easy reference.

1" " =
Xig = the "score” of examinee a onite?n i. Xsn I. ir

the item is answered correctly. X, ™ O othervise.

n -=- the number of'itq'na in a'singl_,e form of a test, i.e., in

a sirngle sample. The sﬁbscript i »uns fram 1 to n .,

N  =- the numbexr of examinees in a single group of exsminees.

The subscript & xruns from 1 to R .
mn -~ the number of items in a finite population of items.

P, -- the cbserved "aifficulty” of item 1 for the XN exandi -

nees tested. P = z:xia/n ;
a

9 =1l-p -



A

g == the “proportion-correct score" of examinee =& j the propore
tion of the items in a single test answered correctly by

examinee a . Z, = ta/n ¢

Z, ¢, =2tc., -~ the mean of the N values of z , ¢ , ete.

z =%z /N, etc.
N8

M(p) -= the mean of the n observed values of pi for the =n

items in the test administered. M(p) = Zpi/n .
: i

8,1 B, etc. == the standard deviation of the N values of

, 2 2 =2
¢, z, etc. 8, =§ZB/N -2 , etc.

Bi -= the standard deviation of xia for fixed 1 .
2

2 2
5y = Ixy /N - (f‘ia/“) Py -

Boy » €tCe -- the covariance (over exsminees) of ¢ and t ,

= B = - o ...x
etc. 8ot ™ B8t E:‘(ca §)(t, s

8y 3 By, s Byy == the covariance (over examinees) of ¢

a’

Zg » OT 't.a s respectively, with x a ? for fixed 1 .

i

Byy = B48¢Tyy = Z(xy, - p ), - BV .

s(p) -- the standard deviation of the n observed valuss of 1N

for the n 1tems in the test administered.

s*(p) = Zo}/n - W(p) .
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e(s;,) » 8(sy,) , ete. -- the standard deviaticn of the n

cbserved values of Byy 7 Byp 2 etc. for the n 1tems in

* p 2 = 2 . g 2
the test adxnini.atered..f 8 (8“) iilsit/n - (fﬂn/ﬂ) .

8(61(:’811:) -- the covariance {over items) of 80 a.nd 8

8(sy.s8yy) = Esicsit/ I = (i‘.sic/ n)(fsit/ n) .

it " -

- +
Tio 2 tit ’ Ty, the correlation of c¢_ , t, » O 2

a a’?

respectively with x s ? for fixed 1 .

1 Ty = Be/540%
It should be noted that all the statistics in the foregoing list

are observed sample statistics relating to a given sample. There are

two kinds of sitatistlcs iisted, typified, in the slmplest case, by

zZ= g:za/N and M(p) = i:pi/n . Population parameters have not been

1listed but will be designated, when needed, by the use of Greek letters.

The following adaltional symbols, relating to the totality af all pos-

sible samples of test items (type 2 sampling), will be used.

E(x) -- the expected value of x ; the arithmetic mean of the

statistic x over all possible samples.

S.E.(x) -- the standard error of the statistic x ; the standard

deviation of the statistic x over all possible samples.

5.E.2(x) = B(x®) - [®B(x)]2 .

Var x -- the sampling variance. Var x = S.E.E(x) 4

Cov(x,y) -- the sampling covariance of the statistics x and ¥y

cver all possible samples. Cov(x,y) = E(xy) - E(x)E(y)



Table . summarizes the more lmportant of the type 2 standard ervors

derived in the present paper. For purposes of comearigon, the last

columm of the table, when appropriste; gives the cérreapcnﬁins usual
type 1 formilas for the standard error for the case where the test
scores are assumed to be normally distributed. The standard error
formmieas in both colums are le.rge-séﬁ:ple formulas, in general, and

observabli sample statistice have been substituted for the corresponding
population values throughout.

At a later point 1t will be proven that in large ssmples of the

Ead
]

{3

zond type all of the btose statlstics in the left-hand coluamw of Table
1, with the possible exception of the Kuder-Richardson formula 20 reli-

ability coefficient, hare en asymptotically normal sampling distribution.
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I1llustrative Ex&mplesland Discussion of the Standerd Errors

Suppose that Form A of a certain 155Jitem.test has beeﬁ adniinistered.
Seversl parallel fnrms of tbis Bame. teat are to be administered in the
_future._ Each form is;administered to a different group of examinees.
The grcupg of examinees may be eonsidered as rendom semples drawn from
-the same popuiation. Eaeh,group is 80 large that differences between
groups due to sampling of examineee may berignored.* It ie found that
the mean, standard devietion, and Kuder~Richardson formula 20 reliability

of the scores on Form A are 65 5, 21. 5, and 0.95, resue..tively How much

1may we. eXPPub Lue means Lo vary from form to ioxm?

The:rquﬁggg‘yalHE'of s(p) can be determined dlrectly from item

analysis data; or it can be calculated from the tliree numerical vaiues

glven by solviﬁg for 8 (p) Tucker's modification (8) of the eguation

for the Kudqr—Ricnardson formula 20 relisbility, the result being:

: 2 e .
et Ao v -2
2 . tnel - E t-

- gZ(P)'=;?T n Y20 T l) n -2 (1)

We find that Be(p') = 0538 .

The large-sample estimatelof the type 2 standard error of the meen
is found to be S.E. o(t) = (The subscript "2" is used here, and
the subscript "1" is used below, to inﬁicate type 2 and type 1 standard
errors, respectively. Hereafter, type 2 sampling w;ll be understeod,

unless otherwise specifically indicated.) If the'same test were admin-

*Useful formulas for dealing simultaneocusly with- sampling of items
and sampling of exeminees have been developed by the writer for certain
of the stutistics studied here. Some such formules are recently inde-
pendently reported in Hooke, R., "Sampling from a matrix, with applica-
tions to the theory of testing." Princeton University Statistical Re-
search Group, Memorandum Report 53, 1953. (Dittoed.)



istered to random groups of 135 examineeg, the type 1 standard error
would be - B.E. (%) = 1.8 .

On the basle of the foregoing, we may expect that parallel forms of
the test would not differ from each other in mean score by as much as
2/§S.E.E(€) = 7.6 points mors than one time in twenty. If the parallel
forms are carefully constructed by mstching items from form to form on
difficulty and ltem-test correlation rather than by random samplling of
1tems, it may well be that the forms will not differ from‘each other
as much as the foregoing formulas would indicate. On the other hand,
it 1s not unlikely that supposedly parallel forms of a test may, because
of the unconscious blas of the test constructor, often be found in fact

tS be less parallel than would be expected if each form were a random

gample of test 1tems.

- In many kinda of statistical experiments it 1s commonly not merely
desirable.but e.ctua;.ly necessary to gelect cases by randam sarpling
rather than by stratified sampling, even though randam smmpling gives
rise to larger sampling fluctuations. The reasom 1s, firat, that random
sampling -tends to avoid unintentional biss; and, second, that the stsnd-
ard errors arising from random sampling are known snd easily used,
whereas those arising from stratified sampling are often either unknown
or excessively cumbersome to use. Similarly, and for the same reasons,
it will be desirable in certain kinds of experimental work, t.'.o use par-

allel forms composed of ltems gelected at randam rather than in any

other way.



Suppose, for example, it is desired to irvestigate the relation of
length of reading passaée to validity in a reading comprehension test.
The experimenter might well selécﬁ at random from a Zcol of all avail-
gble resding items of some specified difficulty level (a) a sample of
all items based on passages containing more than 200 words and (b) a
sample based on passages containing less than 100 words (it i assumed
here that there is only one item per reading passage). He then places
these 1tems In random order and administers them to ;a group of examinees,
obtaining separate scores for the long and for the sghort items. He com-
putes the validity of each score, using some awellable criterion. If
thé two valldity coefficlents differ by little more than the type 2
standard error of thelr difference, it seems likely that the difference
is attributable to chance fluctuations due to the sampling of items.

If they differ by several times this standard err\or, the opposits con-~
clusion may be reached; insofar as other uncontrolled experimental var-

iables are ruled out, the difference may plausibly be attributed to length
of reading passage. -

A ncote of cautior is neceésary In using the '. type 2 standard error
formulas. These formulas iﬁvolve no assumﬁtions beyor;d random sampling
and large n 3 however; it 1s not at present known just how large an .
18 needed in any given case. The formilas in Table 1, therefore, should
be used with some caution. This is particularly true of the last three
Tows of. ‘the table, since the correlation coefficients given in the first

column i.mdoubtedly have sharply skewed distributions when n 1s emall.

It should, finally, be ncted that the assumption of random sampling
of iteme cannot be expected to hold for speeded tests, and the formulas

given in the present paper muist be considered inapplicable.
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Standard Errors of Measurement and Test Rellability

Tabie 1 givea & practical approximation to S.E.(ta) in terms of

observed sample statisticsj the rigorously accurate value, as shown in

a later ssction is

S.E..a(ta) %%Ta(n -7,) . ; (2)

Here ’I’a = E(ta) is the true score of examinee a , i._e., the expected
value¥* of ta over all rendomly parallel forms of the test. The stand-~
ard error- of the score of an examinee is the standard deviation of the
errors of measurement of his score (error of measurement = t, - 178 ).

The average of such standard deviations of errors of measurement over

all examinees,

bs.52(t,) = g, - 7,)° | (3)

*The expectation symbol, E , denotes the average {aftttmotic mean)
value over all type 2 samples. Thus the operator E can be treated by '
the same rules as a summation sign, so that E(x + y) = E(x) + E(y) ,

Eg(ta) = EE(ta) s B(nt) = nE(E)", E('ra) = T , etc. By def altion
T, = E(t,) » s.E2[F(t)] = E[E(t) - E{f(,ﬁ)}je =‘E{f(t)}2 - [E{f(t)}_’f ’
ana corfe; (6),25(0) | = Bley (1) (8 ] - EE‘l(t)]E[fz(t):‘ , vhere £(£)

is any function of ¢t .
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msy appropriately be compared with the conventionsl "stenderd error of
measiremsnt™ of test theory. This latter, which will be denoted by

"3.E.Meas.," is likewise an average over all exmminees. It is convens
tionslly defined by the formula '

5.E.Meup. = B'B/]‘ - reliability . (&)

Bpecifically, 1t will now be ‘shown that the squared standard error
of measurement given by equation 3 is exactly equal to that which would
be expected in equation % 1f the test reliability there were given hy
the Xuder-Richardson formula 21 in reference (5). In our notationy

this formila is

£ - T2 - /)

T, = ——
21  n-l

: (5)

2
B
Aversging equation 2 over all examinees, we find

2 1 :
%?Eoﬁgxgﬁg@-TQ
. 1 2

2 ELEY& B “-a‘ra

=7 -G+ F) (6)

From (5) and (4), the expected velue of the squared 8.E.Meas. is

et - ) | =ity Wb - - D) (7)




ig

In order to deal with (7) we first need expressions for E{sf)
snd. E(£)2 .

2:) = 2ffece, - 0] = offfie, ) ¢ o -1 - @ -] @

After squaring and rzarrenging E and X signs,

E(s2) = %-EéE{(ta . w;f% + é?g(‘ra - ‘?)2} 3 m:{(% . '?')2} +

ax(r, - DEf(y, - v} - 2{E - Mxce, - )} - 2={E - Dz, -'»?)}:] :

(9)

Now the fourth and the last teyms on the right vanish since E(t . " "ra_}*

and E(‘Ya = ¥) Dboth equal zero. It is seen that we have, term for term,

2 2
E(st)f%EaVarta-de-i-VaI‘E-bD-2Vnr§-0 :

(10)
Now Var t_ is given Ty (2), so that
E(s}) = 3Em(a ~v,) + dp «Var € . (12)

Firslly, proceeding as in (6), we have

2y~ 1~ n-~-1 2
Bey) =F-2F 4Bl ol ovar € . (12)
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Next »

) =z -9 + Ff
=5 - 7+ é-m(s - 7) + B(P)
=Var £ + ¥ . (13)
Fram (7), (12), and (13),
EE:%(J. nrgl?" =-£_‘«an?-‘\]'&1‘£ NGRS G- = S Y E_]

2
qr-

]

-

t
B+

# . (1)

=3 1]

This result is the aame as that in (6). We have shown that the average
gquared standard error of measurememt found in type 2 sampling is exactly
equal to the expected value of the squared B8.E.Meas. derived froam the

formula 21 Kuder-Richardson reliability coefficient.

The loglcal relation between Kuder-Richardson formmlas 20 and 21

can be derived fram equatioms 1 and 5, fram which it is readily foumd
that
Z 9

2 2
(1 - 1) = 8(1 = 1) « %%ifsp : (15)

Now the term on the left amd the first term on the right of (15) are
the Bquared standard errors of measurement computed froa Xon and

trom v, , respectively. Furthermore, since nsi/ (n ~1) 18 the
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best unblassed small-sxaple estimate of the population V‘s\‘riancﬂe ng »
‘it 1s seen thet the last texm on the right iz the small-sanple estimetor
for the aguared standard error of the mean score (see equaticn 22).

Consequently, we mmy rewrite (15) as

(S.E.Meas.eo)z = (S.E.E&eas.al)e - S.E.?'('{,) i (16)

The difference bhetween Tho and rél y as made apparent in
" equation 16, arises from the fact that some randomly parallel forms
are, by chance, composed of harder~than-average i’i:ems, or of easier-
than-average items; comsequently, the mean of the actual mcores an
any glven test is not exmctly equal to the mean of the true acores

for the same exeminees. The ume of r20 is appropriate wkenever one

ie willing to ignore any difference between the mean test score of the

group and their mean true score, i.e.; when one is concerned only with

the relative rather than the absolute size of the acores of the group.

On the other hand, To should be used whenevyer one ig concerned with

the actusl m@itude of the errors of measurementi, €.£., whenever there

is a predetermined cutting score which divldes the examinees into

pasging and failing groups.
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Comparison with Certein Standard Formules

A formula closely related to equation 4 is the following (adapted

from equation 66 of reference (7)):

8
8.E.(£) =7§ /I~ Telisbiilty . (66} -

The question arises as to why S.E.(f) 1in equation 66 has a
totally different formula from ihat glven in Table 1 for the type 2
standard error of the mean. If we use equation 66 to determine whether
or not two forms of a test yield significantly different mean scores,
we will always find the difference to be significant provided only
that we teke a sufficiently large number of examinees ( N ) for our
experiment. This is true because the standard error of equetion 66 is
inversely proportional to fﬁ " -~ the standard error vanishes when X
18 large. In spite of this fact, 1‘t should be noted that (66) is not
& type 1 standard error. A type 1 standerd error involves the sampling

of individuais, whereas only a single group of examinees is contemplated
in (66). : '

The stendard error given in equation 66 represents only the sampling
fluctuation due to those errors of measurement that "average out” when
taken over many individuals. Such errors of measurement arise from
virtually instantaneous "chance" fluctuations in the individual. One
e;mnple of such an error of measurement is the following: An examinee,
not kmowing the answer to a true-false item tosses & coin, in effect, to

select the correct answer. If the same test could be administered agein
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vithout practice effect, the nssmes etmineecwould have a fifty-fifty
chance of glving & different sneswer. 'This Qifference gives rise to an

error of meagurement of the type unier discussion.

The standard error of the mesn giver in Table 1 includes not only
saméling errars of the sort just mentioned, but also sampling errors

a.riaihg from the sampling of the test items.

The line of reasoning applied to equation 66 1s equally applicmble
to Wilks? (10) and tu Votaw s (9) significance tests when either of
these 18 used as a criterion of "parallelism” in tests, as suggested
by Gulliksen (3, Ch. 14%). Gulliksen defines "parallel™ tests as having
equal means, equal variances, and equal intercorrelations with each
other and with all external criteria (as well as setiafying appropriste
non-statictical criteria of parallelism). Wilks® and Votaw's signifi«
cance testa "prcvide rigorous statistical criteria for "parallelism”
under thid definition. It would not be very desirable, however, to
epply Wilks' or Votaw's procedures to data such as were obtained in the
pecond ilIustrative example given in a preceding sectiémn. If a.>t‘est
camposed of items having a certain characteristic is to be coampared with
a test camposed of different items having a second characterlstic, it
may not be very useful to set up the null kypothesis that thg two tests
~ are strictly interchangesble in every way.. Such a null hypothesis will
slwvays be rejected if N 1s sufficlently large, but the rejection of
thia hypothesis does not necessarily impliy that the first and second
characteristics have different effect, since the observed diacrepancy
might be reedily accounted for as no greater than would be expected to

be found In comparing two randamly paralliel tests camposed of the same
kind of items.
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Sampling Distributions of Test Statictics

It remains conly to present“the derivat;ona of the results that have
up =C now been'quoted without proof. The derivations are thsedlon the
assertion that there is & definite response { X0 J that a given examinee
wiii make to a given itém. The nature of this response may or may not be
known in advance. The group of N examinees to whom the items or tests

are administered is s fixed group not subject to sampling fluctustion o

other changes.

The responses of the N examinees to item 1 may be specified by

3¢ 1 b . s >
the colgmr vector {xi Xy19%09 ’xiN}' Since each item response

is assumed to be treated as either "right" or "wrong", Xig = 0 “er=1 %
and there are exactly 2N possible different vectors, i.e., different
petternc .of item response. If we let the gubscript I = 1,2,3,...;,2N >
then these possible patterne are represented by the EN Yectors Xg o
If two items have exactly the same pattern of responses, 1.e., if the
response of edch examinee 18 the same on both items, then the two items
are wholly indistinguishable in the présent sltuation. It may therefcre
be asserted without loss of generality that, for present purposes, any
infinite pool of items im composed of 2N different kinde of items,
designated by the 2N vectors xI . The relative frequencies of
occurrence of the different kindr of items are therefore the cnly
parameters needed to describe completsly any infinite pcool; these

parameters will be denoted by ﬂi s the relative frequencles of occur=-

rence of the patterns xI .
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When a random sample c¢f n test items is drawn from the pool,
the probability that the resulting n - item test will be composed of
R, dtems of the first kind, n, items of the second kind, ..., n

I
items of the I - the kind, ..., _ items of the 2" - th kind

(2)

is given by the standard mu.ltinoml&l distribution (6, pp. 58-59):

»f(ﬁl,ne;«-.,n(EN)) ‘T..‘-—.'ﬁ—y -TT’U" . v o ) (17)

It can be shown (1, p. 419) that the quantities Vi (nI - oty YN
are ssymptotically normally distributed for large n wlth zero means
and with the (singular) variance-covariance matrix I - T’ , where I

is the identity matrix and T is the column vector (/1?1, ‘/'72’”" ,/77-2 N) )
1 2

Now, the test score of individual a is =z =l2‘.x "—--:-L-Zx Ny o, the
a n, ia Dy Ia
" : ,i

xIa. being given constants, O or 1, not subject to sampling fluctuation;
or, in terms of V. , 1z = Z:?&x Z‘. J *1eVy - The first term on
the right is Ja. =7’a/n , the "true" proportion-correct store; 80 that,

finally, \/_(z -f) z ‘ﬂera T It is thus seen that the N var-

i 3

iables Jﬁ(za - 5a) are asymptotically Jjointly multinormally distributed,

each with & mesn of zero, a variance which turns out to be J’a(l -5),
and covariances § ap = oSy » vwhere jab is the proportion of all items

answered cbrrect]y by both examinee a and examinee b . It follows

immediately that the. large-sample standard error of z, 1is ,[ga(l - Sa)/n
(er. (2)). The derivation of these and other standard errors will be

left to the following section, however.
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By a well-known theorem, 1f f(il,zg,...,zn) is a function of the
2, having continuous first-order partial 'derivativge with respect to
each z_ At the point (§1,§2, i N) , end if at 1east_2?§ of theee
aerivatives is nonvanishing at this point, then the quantity JE r(zl 9
Losnenrty) - f(gl,gz,...,QN}] 1s asymptotically normally distributed

with zero mean when n 1s sufficiently large. This theorem assures us

that the mean score ( z or £ ), the standard deviation of the scores

( s, Or 8 ), the Kuder-Richardson formula 21 reliability ( ral,) 4

and the test validity ( Toy O Toyp ), are approximately normally

dlstributed in type 2 sampliog with large n ; and in eddition gives us

" the large-~sample expected value of each atatistic. It seems highly
likely tﬁa‘t the Kuder-Richardson rellabllity, formula 20, likewlse 1s
asymptotically normally distributed, but no proof of this conclucion
1s available &t present, in vlew of tkhe fact thet the formula for this

statistic involves oz(p) s, which is not a function of the Z, -



Desivations of Expected Velues ang Stenderd Errors

The Individual Score

The proportion of the items in the entire pool to which examinee

& will glve the correct answer is, by definition, §a - 'T‘a/n . If

n items are drawn at random from the pool, tg s the score of examinee

a on the resulting test, 1.e., the number of items thet he will answer

successfully, wlll of necessity have the usual binomial distribution®*

with mean and variance

Bt ) =T, , (18)
2 i
8.E.(t,) =5 ’!’a(n - -7'8) = ns’a(l - sa) . (19)

This conclusion (and also those that follow, except as large n may be

assumed ) depends on no assumptions whatever except that of rendom sampling.

Equstion 15 is ldentical wlth equstion 2, which was discussed ln a pre-
vious section. If the obeserved value ta is substituted for the unknowm

T, ino (19), we obtain the square of the first formule of Table 1.

For finite sampling, when =2 1tems are drawn without repiacement

from & finite pool of m 1tems, the corresponding formulas; stated withe

out proof, are

E(t) =7, (18%)

#
If we concern ourselves with only a single examinee, the number of
correct responses that he gives on one assrmle of items 18 not correlated

with the number that he gives on other samples.
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: 2 - men g
SiEi (t&) —‘ "!'m_'l'r&(n - ’T‘a) IS (195 )

The Mean Score of the Group Tested

=

- ;It shculd be’ﬁoted thatitheggéoreé7of'ex&minees m apd b are
not ihdéﬁéﬁdenﬁ_éég;:diffqréﬁt"paéﬁllel foimsfo?;the'tept.'fif'x'
particular Porm happens to be composed of rather difficult items, both
examinees wiil tend to get low scores; if s particular form happens to
be easy, both will tend to score higher. Conseqnently, although the
expected value of the mean score in the group is equal-to the: mean of

the expected values of the individual scores, i.e.,

|_J

EE) =z =% , ' | (20)

®

the standard error of the mean is not an average of the standard errors

of.the individual scores.

It will be convenient from thie point on to work with By ta/n y
the proportion-correct score, rather than with té iteelf. The nature
of the:-desired standard error follows immedietely from the fact that

the mean score { z ) is identically equal to the average item difficulty

Ik

z = M(p) . (21)

The usual formulas for the standard error of a.mean apply to M(p) ,

so that

Bl u 12
S.E.%{(z) == (p) (22)

vhere o(p) is the standard deviation of the item difficulties over



a2

the whole pool of items.* If the observed velue of s"(p) is substi-
tuted for the uiknown ca(p) , apd if t/n 1is substituted for =z ., the
square of the second formula of Teble 1 is cbtained.

In sampling from a finite pool of ‘m 1items 5 the ‘corr'ﬁesponding

formula, stated without proof, is

5.E.%(3) =%%1-02(p) : (22*)
We may note that o(p) for & given set of items, and hence

S.E.g(i) for a given tést, will be higher wﬁen < N 48 small than when
N 1is large. Buppose, for éxample , that all iteﬁm have the same dif-
fieulty ( p ) for a very large group of examinees, so that for this
group c(p)l =0 ., If the seme items are sdministered to a smaller
group of examineez drawn at randam from the larger, the observed wvalues
of p 4 in the smaller 'group' will differ from each other because of
type 1‘sé;mp‘ling fluctuations, end o(p) will be greater than zero.

In the ex!;reme éase where N =1 ‘ ', the observed values of p ‘a“re of

neceseity either O or 1, and o(p) is at a maximum.

- ‘
" Equation 19 is & special case of equation 22, being obtained when

By =X, - x
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The Standard Devietioun. of the EBcores of the Group Tested

In order to obtain the standard error of ei » we first uee the

formula for the variance of a sum to wvrite

21
8in teing the covariance between iten 1 and item h . Then, again
from the formula for the variasnce of a sumy
Var 8- = -3 % Cov(s,,,8..) (24)
Z  p*nijk J

a " -
where "Cov™ stands for the sampling covariance: Cav(sih,s Jk) Es ;8 ik

- Esihza kO

Grouping the sums in (24), we obtain

o 1 | nh-6n3+lln2-6n ( ) n3-3n2+2n ( 5 )
Var s_ =- L X L %L Cov 38 +2%L L L Cov(s,,s
I R (e (1535% #) ALK
L n5-3n2+2n ( ) h_ noan ( 2 )
+4% & I Cov(s,,ys + 4 L K Covis ,s + other sums
(L, 4) WO gy T

containing no more than 12 terms each| . (25)

Here the first sum is over all sets of four subscripts no two of which
are the same, etc. The ccoefficient 2 of the second sum arises from

combining the two equirelent expressions L L L Cov(s? )8 :jk) and
i



2k

e PO

L EZX Covis ,87)
(n,1,34) b

The polyncials 1n n written ebove the summation signs Indleste the

.

»  The other mmerical coefficients arige similariy.

[b

nunber of terms imvolved in the summation.

Nows; the terms inder esch mumpeti-n sign in (25) are all the same

no matter what the numerical values of the subscripts; comnsegquently

Var si -iﬂ [(nh - 6° & 11n® - Gn)c"-"(“m’“ax) + 2(n5 - 5112 + &)CW(ai,aak)
3 2 2 -]
+ 4(n7 « 3" & h)cm(’i‘j"ﬂ:) + O(n )-J 5 (26)

where O(na) stands for terms of order n> . In (26) and in the followe
ing paragrarh 1t is vnderstood that h,i,J ,k% e

Now, 8,, &d 8 1K fluctuate independently over succeasive samples,

80 that Ccrr(shi,sjk) = (Q . The same is true of s? and 8y Con~
sequently,

Var 55 x;l% (n3 - 3:12 3 an)Cov(sij,sjk) + O(;%)t -gc:cv(aid,sdk) ¥ 0(;35). (27)

Equation 27 glves the desired result, but not in & very useful form,
since Cmr(ai 33 ,jk)' 18 8 function of population parameters and is gener-
ally not known. Ae & final step, then, it will be shown that sa(s iz) 5
the actual variance (over items 1 to n ) of the observed item-test

covariances, provides a "consistent™ estimete of Cov(sm,sdk) s 1.e.,

it will be proved that



Esg(aiz} = Cov(sid,sdk) + 0(-:‘;) . (28)

From the formula for the covariance of a sumy

By, = %32813 H (29)
sz(su) = fé ?és(sid’“ik) “ ‘ (30)

the term under the summation sign being the actual covariance (over

items 1 to n ) of the observed values of Bij and Byy

B8y 4s8yy) = %{“’13"11: - ;lé({'“x.g)( ’{‘"u) . (31)

Substituting from (31) into (30), and taking expected values, we
£ind

Bs"(s,) = % % v —Ehidk g T (32)
Grouping the sums on the right, we bave
rn(n-].) (n=2) n(n=-1){n-2} (n-})
2 2,1 _1
o3 a2 TETE e

+ o(é)] F (33)



Now, the ferms undec emch mumgation zizn in {33) ars the same rea-
gaxdless of the numerical value of the subscript. Furthermore, as alresdy -
polinted out in deriving (2’?_),. Cov(shi,sjk) =0 when h,i,J,kt , or in
other words, Eshjsik - E”hJEsik =0 , or Eghjgik = EBiJEBik . Con~
sequently, : :

2 % = ) l ?
Es (siz" Eﬁijsi‘& - EsijEsik + 0(-1-1-> 5 (3%)
But this is the ssme as (28), which was to be proved.

The lédrge sapple stsndard error of 33 mey therefore be estimated

from the actusl variance of the observed ltem~test covariances:

202y b2
8.E. (sz) 'fia(siz) .

(35)

By mesns of the "delta”™ method (4, Vol. 1, pp- 208 ££.), 1t is
readily shown from (35) that in large samples

. P 5 |
S.E.g(az) wﬁgs.z, (si) =~-::—-§-z»- . (36)

If t/n is substituted for z in (3R), the square of the third
equation of Table 1 iz obtained.

The corresponding squared standard error for sampling from finite

popuiations may be shown to be

S.E.,E(sz") = 4 %sg' '8

L) - (37)
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The Koder-Hichardson Reliebility Coefficient, Formulas 20

Let the ususl formula for r,, » the Kuder-Richardson formula 20,

he rewritten as fcllows:

Y20 T B_Y-l—lé - '?i) ’ . (38)
vhere R = %%ai/sf = M‘/si y BAY .
In the extraordinary case where 93 =0 , we will agree not to try to

campute any velue nf T, . The "delta"” method may now he used to
obtain the result.

VarRé-]j‘-V&rM-i-—M-gVar 52 -%Cov(m,eg) ’ (39)
8 8 8 :
b4 4 z

Now Vax(si) is already known from equation 35. Var(M) can be evalu-

ated by the usual formula for the standard error of a mean:
ver M = 3a%(s7) (k)

where Ba(Bi) is the actual variance of the otserved item vari&-nces_.

Finally, it is readily shown, by methods similar to those used in eval-
o
uvating Var (s'z') s that

the
=3 hV]
[3:]
~~
[/}
et
-
0
[N
N
N
.
~
&
Pt
LY
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r ;2 . 2 :
Ythere 5(84,812) is the mcoual cavariance between the ohserved lten

noes,

varisnces and the observed item-test: covaria

;anseqﬁqntly,“

e

Var Ii":-é"-i-g [sa(s?) # 4RPa2 (8 2= 4Rs(81,8. )] (%&2)
ns,

2

Now Var(réo) = f§ Var(R) ; hence, to order l/nh
S 2, 2, . 2o, »
S.E.e(reb) =-;%;H‘:s (si) + hng(l - rEO) 8 Siz) - bn(1 - rQO)S(Si’Bizi] 8 (F})
z : .

It may be noted that the quantity (1 - rao) is of order 1/n , because,

by the Speerman-Brown formule; lim n{l = r_..)
- n=00 20

sééﬁ;from:(hE) that S.Ese(rao) 18 a quantity of order l/n3 : Equatio@

= constant © It 1is then

" L3 leads directly to the fourth formula of Table 11

It mey be shown that the corresponding stendard errorawhén'sampiing

from a finite population is (m - n)/m times the value given in (43).

The Kuder-Richardson Reliability Coefficient, Formula 21

By a procedure wholly parallel to that used for the formila-20 relia-

bility coefficient, it is found that, approximateiy,

S.E.e(ral [}l = ?z) 8 (p) 5 b {L, = r2 )252(s§£)
- kn(1 - r21)(l - 2z)s 122] (k)

where s(pi,siz) is the actuel covariance between the observed item
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2]

diffieulties and the observed item-teat covariances. Equation 4k lesds

directly to the fifth formule of Table 1.

ik : : d - M -
The standard error of the split-half reliability coefficient has

not beern worked out. Tt must, however, be larger than the standard

- ' is the mean of tne split-

helf coefficients frqm all‘posaible splits, as shown by Cronbach (2).

error of r,y , glven by (43), since

The Validity Coefficient

If ¢ is an outside eriterion,

By the "delta'" method,

T EY - 2 ]
oo, p |Ver s, Vars, Cov(scz,sz)
Var- g = ‘.!:'cz 5 + T - = : (hG)
- 8 Ls 8 B .
CZ Z czZ 2z
It is found that
2 1.2 .

var 8., \f (Bey) (¥7)
- 2y 22 L . |
C°Y(81z’§z) "fﬁf(§ci’siz) i . (L8)

Finally,

N ns

2 1 ! g | cz 2 L
8.E. (rﬁz) T3 LT? g (Bci).' szs; B(Sic’siz) - (Biz) - (49)
z| "¢ :
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-

Equation 49 leads directly to the last formula of Table 1.

The corresponding standerd error for sampling from & finite paqal

of items is presumably (m - n)/m times the foregoing quantity.
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